Machine Learning in Finance
Instructor
Dr. Kekun Wu
- Email: kkwu#zuel.edu.cn (Pls replace # with @)
- Wechat:
教学计划
序号 | 主题 | 时间 | 讲义 |
1 | Introduction | wk1 (wk10) | L01 |
2 | Linear Regression | wk2 (wk11) | L02 |
3 | Dimension Reduction | wk3 (wk12) | L03 |
4 | Trees, Forest, and Boosting | wk4 (wk13) | L04 |
5 | Deep Neural Networks | wk5-6 (wk14-15) | L05a |
6 | DNN for Sequence Data | wk7 (wk16) | L05d1, L05d2, L06 |
7 | Course Project Presentation | wk8 (wk17) | x |
Jupyter Notebooks for the course are accessible via the cloud service with “t7me” as the password.
教材与参考书
- Murphy K P. Probabilistic machine learning: an introduction[M]. MIT press, 2022.
- Dixon M F, Halperin I, Bilokon P. Machine learning in Finance[M]. Springer International Publishing, 2020.
- Nagel S. Machine learning in asset pricing[M]. Princeton University Press, 2021.
- de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020.
- Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022.
主要参考文献
[1] Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: An agenda, 2018: 507-547.
[2] Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725.
[3] Mullainathan S, Spiess J. Machine learning: an applied econometric approach[J]. Journal of Economic Perspectives, 2017, 31(2): 87-106.
[4] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: https://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412
[5] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225.
[6] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264.
[7] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315.
[8] Amel-Zadeh, Amir and Calliess, Jan-Peter and Kaiser, Daniel and Roberts, Stephen, Machine Learning-Based Financial Statement Analysis (November 25, 2020). Available at SSRN: https://ssrn.com/abstract=3520684 or http://dx.doi.org/10.2139/ssrn.3520684
[9] Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273.
[10] Giglio, Stefano and Kelly, Bryan T. and Xiu, Dacheng, Factor Models, Machine Learning, and Asset Pricing (October 15, 2021). Available at SSRN: https://ssrn.com/abstract=3943284 or http://dx.doi.org/10.2139/ssrn.3943284
[11] Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal of Econometrics, 2021, 222(1): 429-450.
[12] Kelly B T, Pruitt S, Su Y. Characteristics are covariances: A unified model of risk and return[J]. Journal of Financial Economics, 2019, 134(3): 501-524.
[13] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292.
[14] Tobek O, Hronec M. Does it pay to follow anomalies research? machine learning approach with international evidence[J]. Journal of Financial Markets, 2021, 56: 100588.
[15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, The Factor Model Failure Puzzle (November 19, 2021). Available at SSRN: https://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588
[16] Chen, Luyang and Pelger, Markus and Zhu, Jason, Deep Learning in Asset Pricing (April 4, 2019). Available at SSRN: https://ssrn.com/abstract=3350138 or http://dx.doi.org/10.2139/ssrn.3350138
[17] Bryzgalova, Svetlana and Pelger, Markus and Zhu, Jason, Forest Through the Trees: Building Cross-Sections of Stock Returns (September 25, 2020). Available at SSRN: https://ssrn.com/abstract=3493458 or http://dx.doi.org/10.2139/ssrn.3493458
[18] Giglio S, Liao Y, Xiu D. Thousands of alpha tests[J]. The Review of Financial Studies, 2021, 34(7): 3456-3496.
[19] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021.
[20] Jiang, Jingwen and Kelly, Bryan T. and Xiu, Dacheng, (Re-)Imag(in)ing Price Trends (December 1, 2020). Chicago Booth Research Paper No. 21-01, Available at SSRN: https://ssrn.com/abstract=3756587 or http://dx.doi.org/10.2139/ssrn.3756587
[21] Ait-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2): 384-399.
[22] Aït-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association, 2019, 114(525): 287-303.