目录
Topics in Machine Learning and Finance
Instructor
Dr. Kekun Wu
- Email: kkwu#zuel.edu.cn (Pls replace # with @)
- Wechat:
教学计划
序号 | 主题 | 时间 | Slides |
1 | A Brief Introduction to ML | wk1 | L01-introduction-slides |
2 | Shallow Learning Algorithms | wk2-wk3 | L02-regression-slides L03-classification-slides L04-trees-and-ensemble-learning-slides L05-unsupervised-learning-slides |
3 | Deep Neural Networks | wk4 | L06-deep-learning-I-slides, L06-Deep-Learning-II-slides |
4 | Literature Studies | wk5-wk8 | Presentation Schedule |
5 | MDP & Reinforcement Learning | by yourself | L07a-MDP-slides L07b-RL-slides |
6 | SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | NBER Working Paper: Financial Machine Learning |
7 | ST2: Machine Learning and Causal Inference | by yourself | NBER SI 2015 Methods Lectures - Machine Learning for Economists 2018 AEA Continuing Education Webcasts: Machine Learning and Econometrics (Susan Athey, Guido Imbens) Machine Learning & Causal Inference: A Short Course |
教材与参考书
- Murphy K P. Probabilistic machine learning: an introduction[M]. MIT press, 2022.
- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor. An Introduction to Statistical Learning with Applications in Python[M]. Springer Cham, 2023.
- 邱锡鹏,神经网络与深度学习,机械工业出版社,https://nndl.github.io/, 2020.
- Dixon M F, Halperin I, Bilokon P. Machine learning in Finance[M]. Springer International Publishing, 2020.
- Nagel S. Machine learning in asset pricing[M]. Princeton University Press, 2021.
- de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020.
- Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022.
- Denev A, Amen S. The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers[M]. John Wiley & Sons, 2020.
考核方式
- 考核方式:课程项目
- 项目展示:40%
- 项目报告:60%
- 课程项目内容(同时)包括:
- 文献评述
- (全部或部分)复现经典论文/其他(拓展)结果
- 进一步研究计划
- 主要参考文献
- 附件(数据、代码等)
- 要求
- 内容必须同时与机器学习和金融研究密切相关
- 无任何学术不端行为
- DDL:15-Dec-2024, 20:00:项目报告+PPT
- 提交方式:百度网盘
学习资源
NBER SI 2015 Methods Lectures - Machine Learning for Economists
2018 AEA Continuing Education Webcasts: Machine Learning and Econometrics (Susan Athey, Guido Imbens)
Kaggle Data & Competitions
主要参考文献
Machine Learning, Economics and Finance
[1] Mullainathan S, Spiess J. Machine learning: an applied econometric approach[J]. Journal of Economic Perspectives, 2017, 31(2): 87-106.
[2] Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: An agenda, 2018: 507-547.
[3] Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725.
[4] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225.
[5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. Machine Learning and Asset Pricing
Machine Learning and Asset Pricing
[6] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2): 384-399.
[7] Aït-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association, 2019, 114(525): 287-303.
[8] Kelly B T, Pruitt S, Su Y. Characteristics are covariances: A unified model of risk and return[J]. Journal of Financial Economics, 2019, 134(3): 501-524.
[9] Adämmer P, Schüssler R A. Forecasting the equity premium: mind the news![J]. Review of Finance, 2020, 24(6): 1313-1355
[10] Amel-Zadeh, Amir and Calliess, Jan-Peter and Kaiser, Daniel and Roberts, Stephen, Machine Learning-Based Financial Statement Analysis (November 25, 2020). Available at SSRN: https://ssrn.com/abstract=3520684 or http://dx.doi.org/10.2139/ssrn.3520684
[11] Bryzgalova, Svetlana and Pelger, Markus and Zhu, Jason, Forest Through the Trees: Building Cross-Sections of Stock Returns (September 25, 2020). Available at SSRN: https://ssrn.com/abstract=3493458 or http://dx.doi.org/10.2139/ssrn.3493458
[12] Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273.
[13] Karolyi G A, Van Nieuwerburgh S. New methods for the cross-section of returns[J]. The Review of Financial Studies, 2020, 33(5): 1879-1890.
[14] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292.
[15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, Messy Asset Pricing: Can AI Models Lead to a Consensus? (November 19, 2021). Available at SSRN: https://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588
[16] Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089.
[17] Giglio S, Liao Y, Xiu D. Thousands of alpha tests[J]. The Review of Financial Studies, 2021, 34(7): 3456-3496.
[18] Giglio, Stefano and Kelly, Bryan T. and Xiu, Dacheng, Factor Models, Machine Learning, and Asset Pricing (October 15, 2021). Available at SSRN: https://ssrn.com/abstract=3943284 or http://dx.doi.org/10.2139/ssrn.3943284
[19] Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal of Econometrics, 2021, 222(1): 429-450.
[20] Tobek O, Hronec M. Does it pay to follow anomalies research? machine learning approach with international evidence[J]. Journal of Financial Markets, 2021, 56: 100588.
[21] Chen Y, Kelly B T, Xiu D. Expected returns and large language models[J]. Available at SSRN 4416687, 2022.
[22] Dong X, Li Y, Rapach D E, et al. Anomalies and the expected market return[J]. The Journal of Finance, 2022, 77(1): 639-681.
[23] Edmans A, Fernandez-Perez A, Garel A, et al. Music sentiment and stock returns around the world[J]. Journal of Financial Economics, 2022, 145(2): 234-254.
[24] Leippold M, Wang Q, Zhou W. Machine learning in the Chinese stock market[J]. Journal of Financial Economics, 2022, 145(2): 64-82.
[25] Bali T G, Beckmeyer H, Moerke M, et al. Option return predictability with machine learning and big data[J]. The Review of Financial Studies, 2023, 36(9): 3548-3602.
[26] Blitz D, Hanauer M X, Hoogteijling T, et al. The Term Structure of Machine Learning Alpha[J]. Available at SSRN, 2023.
[27] Brogaard J, Zareei A. Machine learning and the stock market[J]. Journal of Financial and Quantitative Analysis, 2023, 58(4): 1431-1472.
[28] Chen L, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2023.
[29] DeMiguel V, Gil-Bazo J, Nogales F J, et al. Machine learning and fund characteristics help to select mutual funds with positive alpha[J]. Journal of Financial Economics, 2023, 150(3): 103737.
[30] Drobetz W, Hollstein F, Otto T, et al. Estimating stock market betas via machine learning[J]. Journal of Financial and Quantitative Analysis, 2023: 1-56.
[31] Evgeniou T, Guecioueur A, Prieto R. Uncovering sparsity and heterogeneity in firm-level return predictability using machine learning[J]. Journal of Financial and Quantitative Analysis, 2023, 58(8): 3384-3419.
[32] Jiang J, Kelly B, Xiu D. (Re‐) Imag (in) ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249.
[33] Kaniel R, Lin Z, Pelger M, et al. Machine-learning the skill of mutual fund managers[J]. Journal of Financial Economics, 2023, 150(1): 94-138.
[34] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv:2304.07619, 2023.
[35] Van Binsbergen J H, Han X, Lopez-Lira A. Man versus machine learning: The term structure of earnings expectations and conditional biases[J]. The Review of financial studies, 2023, 36(6): 2361-2396.
[36] Yu S, Xue H, Ao X, et al. Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning[J]. arXiv preprint arXiv:2306.12964, 2023.
[37] Aleti S, Bollerslev T. News and Asset Pricing: A High-Frequency Anatomy of the SDF[J]. The Review of Financial Studies, 2024: hhae019.
[38] Alexander N, Scherer W. Using machine learning to forecast market direction with efficient frontier coefficients[J]. arXiv preprint arXiv:2404.00825, 2024.
[39] Cakici N, Fieberg C, Metko D, et al. Do anomalies really predict market returns? New data and new evidence[J]. Review of Finance, 2024, 28(1): 1-44.
[40] Dessaint O, Foucault T, Frésard L. Does alternative data improve financial forecasting? the horizon effect[J]. The Journal of Finance, 2024, 79(3): 2237-2287.
[41] Kelly B, Malamud S, Zhou K. The virtue of complexity in return prediction[J]. The Journal of Finance, 2024, 79(1): 459-503.
[42] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791.
[43] Shen Z, Xiu D. Can Machines Learn Weak Signals?[J]. University of Chicago, Becker Friedman Institute for Economics Working Paper, 2024 (2024-29).
[44] Wolff D, Echterling F. Stock picking with machine learning[J]. Journal of Forecasting, 2024, 43(1): 81-102.
Machine Learning and Alternative Data in Finance
[45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021.
[46] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225.
[47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126.
[21] Chen Y, Kelly B T, Xiu D. Expected returns and large language models[J]. Available at SSRN 4416687, 2022.
[23] Edmans A, Fernandez-Perez A, Garel A, et al. Music sentiment and stock returns around the world[J]. Journal of Financial Economics, 2022, 145(2): 234-254.
[48] Obaid K, Pukthuanthong K. A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news[J]. Journal of Financial Economics, 2022, 144(1): 273-297.
[25] Bali T G, Beckmeyer H, Moerke M, et al. Option return predictability with machine learning and big data[J]. The Review of Financial Studies, 2023, 36(9): 3548-3602.
[32] Jiang J, Kelly B, Xiu D. (Re‐) Imag (in) ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249.
[49] Garcia D, Hu X, Rohrer M. The colour of finance words[J]. Journal of Financial Economics, 2023, 147(3): 525-549.
[34] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv:2304.07619, 2023.
[37] Aleti S, Bollerslev T. News and Asset Pricing: A High-Frequency Anatomy of the SDF[J]. The Review of Financial Studies, 2024: hhae019.
[50] Cao S, Jiang W, Wang J, et al. From man vs. machine to man+ machine: The art and AI of stock analyses[J]. Journal of Financial Economics, 2024, 160: 103910.
[40] Dessaint O, Foucault T, Frésard L. Does alternative data improve financial forecasting? the horizon effect[J]. The Journal of Finance, 2024, 79(3): 2237-2287.
[51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, Fama-Miller Working Paper, Available at SSRN: https://ssrn.com/abstract=4835311 or http://dx.doi.org/10.2139/ssrn.4835311
[52] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791.
[53] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv:2401.00081, 2024.
Machine Learning and Financial Risk Management
[54] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: https://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412
[55] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47.
[56] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186.
[57] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27.
Machine Learning and Corporate Finance
[58] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264.
[59] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315.
[60] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878.
[61] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642.
[62] Babina T, Fedyk A, He A, et al. Artificial intelligence, firm growth, and product innovation[J]. Journal of Financial Economics, 2024, 151: 103745.
[63] Gofman M, Jin Z. Artificial intelligence, education, and entrepreneurship[J]. The Journal of Finance, 2024, 79(1): 631-667.
[64] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024.
[65] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030.
Machine Learning and Portfolio Management
[66] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021.
[67] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54.
[68] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815.
Other Topics
[69] Dai R, Donohue L, Drechsler Q, et al. Dissemination, publication, and impact of finance research: When novelty meets conventionality[J]. Review of Finance, 2023, 27(1): 79-141.
[70] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503.
[71] Sautner Z, Van Lent L, Vilkov G, et al. Firm‐level climate change exposure[J]. The Journal of Finance, 2023, 78(3): 1449-1498.
[72] Rossi A G, Utkus S. The diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869.