mycourse:machine_learning_and_finance
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
mycourse:machine_learning_and_finance [2024/09/04 16:26] – [主要参考文献] kk | mycourse:machine_learning_and_finance [2025/03/27 08:42] (当前版本) – [主要参考文献] kk | ||
---|---|---|---|
行 11: | 行 11: | ||
| 序号 | 主题 | 时间 | Slides | | | 序号 | 主题 | 时间 | Slides | | ||
| 1 | A Brief Introduction to ML | wk1 | [[http:// | | 1 | A Brief Introduction to ML | wk1 | [[http:// | ||
- | | 2 | Shallow Learning Algorithms | wk2-wk5 | [[http:// | + | | 2 | Shallow Learning Algorithms | wk2-wk3 | [[http:// |
- | | 3 | Deep Neural Networks | wk6-7 | [[http:// | + | | 3 | Deep Neural Networks | wk4 | [[http:// |
- | | 4 | MDP & Reinforcement Learning | wk8 | [[http:// | + | | 4 | Literature Studies | wk5-wk8 | [[http:// |
- | | 5 | SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https:// | + | | 5 | MDP & Reinforcement Learning | by yourself |
- | | 6 | ST2: Machine Learning and Causal Inference | by yourself | [[https:// | + | | 6 | SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https:// |
+ | | 7 | ST2: Machine Learning and Causal Inference | by yourself | [[https:// | ||
行 28: | 行 29: | ||
- de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020. | - de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020. | ||
- Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022. | - Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022. | ||
+ | - Denev A, Amen S. The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers[M]. John Wiley & Sons, 2020. | ||
===== 考核方式 ===== | ===== 考核方式 ===== | ||
- 考核方式:课程项目 | - 考核方式:课程项目 | ||
+ | - 项目展示:40% | ||
+ | - 项目报告:60% | ||
- 课程项目内容(**同时**)包括: | - 课程项目内容(**同时**)包括: | ||
- | - (全部或部分)复现经典论文 | + | |
- | - 研究计划或综述 | + | |
+ | - 进一步研究计划 | ||
+ | - 主要参考文献 | ||
+ | - 附件(数据、代码等) | ||
- 要求 | - 要求 | ||
- | - 内容必须**同时**与**机器学习**和**金融**密切相关 | + | - 内容必须**同时**与**机器学习**和**金融研究**密切相关 |
- 无任何学术不端行为 | - 无任何学术不端行为 | ||
- | - **DDL:15-Dec-2023, 20:00** | + | - **DDL:15-Dec-2024, 20:00**:项目报告+PPT |
- | - 提交内容:课程报告+PPT+项目展示视频 | + | |
- 提交方式:百度网盘 | - 提交方式:百度网盘 | ||
- | {{: | ||
===== 学习资源 ===== | ===== 学习资源 ===== | ||
行 84: | 行 89: | ||
[5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. | [5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. | ||
Machine Learning and Asset Pricing | Machine Learning and Asset Pricing | ||
+ | |||
+ | **Machine Learning and Asset Pricing** | ||
[6] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, | [6] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, | ||
行 103: | 行 110: | ||
[14] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292. | [14] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292. | ||
- | [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, | + | [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, |
[16] Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089. | [16] Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089. | ||
行 167: | 行 174: | ||
[45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021. | [45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021. | ||
- | [46] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. | + | <del>[46] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. |
+ | </ | ||
[47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126. | [47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126. | ||
行 193: | 行 201: | ||
[51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, | [51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, | ||
- | [52] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. | + | [52] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv: |
- | + | ||
- | [53] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv: | + | |
**Machine Learning and Financial Risk Management** | **Machine Learning and Financial Risk Management** | ||
- | [54] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: | + | [53] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: |
- | [55] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47. | + | [54] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47. |
- | [56] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186. | + | [55] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186. |
- | [57] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27. | + | [56] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27. |
**Machine Learning and Corporate Finance** | **Machine Learning and Corporate Finance** | ||
- | [58] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. | + | [57] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. |
- | [59] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315. | + | [58] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315. |
- | [60] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878. | + | [59] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878. |
- | [61] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642. | + | [60] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642. |
- | [62] Babina T, Fedyk A, He A, et al. Artificial intelligence, | + | [61] Babina T, Fedyk A, He A, et al. Artificial intelligence, |
- | [63] Gofman M, Jin Z. Artificial intelligence, | + | [62] Gofman M, Jin Z. Artificial intelligence, |
- | [64] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024. | + | [63] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024. |
- | [65] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030. | + | [64] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030. |
**Machine Learning and Portfolio Management** | **Machine Learning and Portfolio Management** | ||
- | [66] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021. | + | [65] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021. |
- | [67] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54. | + | [66] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54. |
- | [68] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815. | + | [67] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815. |
**Other Topics** | **Other Topics** | ||
- | [69] Dai R, Donohue L, Drechsler Q, et al. Dissemination, | + | [68] Dai R, Donohue L, Drechsler Q, et al. Dissemination, |
- | [70] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503. | + | [69] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503. |
- | [71] Sautner Z, Van Lent L, Vilkov G, et al. Firm‐level climate change exposure[J]. The Journal of Finance, 2023, 78(3): 1449-1498. | + | [70] Sautner Z, Van Lent L, Vilkov G, et al. Firm‐level climate change exposure[J]. The Journal of Finance, 2023, 78(3): 1449-1498. |
- | [72] Rossi A G, Utkus S. The diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869. | + | [71] Rossi A G, Utkus S. The diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869. |
mycourse/machine_learning_and_finance.1725438388.txt.gz · 最后更改: 2024/09/04 16:26 由 kk