用户工具

站点工具


mycourse:machine_learning_and_finance

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
mycourse:machine_learning_and_finance [2024/09/04 16:25] – [主要参考文献] kkmycourse:machine_learning_and_finance [2025/03/27 08:42] (当前版本) – [主要参考文献] kk
行 11: 行 11:
 | 序号 | 主题 | 时间 | Slides | | 序号 | 主题 | 时间 | Slides |
 | 1 | A Brief Introduction to ML | wk1 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L01-Introduction-slides.html|L01-introduction-slides]] | | 1 | A Brief Introduction to ML | wk1 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L01-Introduction-slides.html|L01-introduction-slides]] |
-| 2 | Shallow Learning Algorithms | wk2-wk5 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L02-Regression-slides.html|L02-regression-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L03-Classification-slides.html|L03-classification-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L04-Trees-slides.html|L04-trees-and-ensemble-learning-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L05-Unsupervised-Learning-slides.html|L05-unsupervised-learning-slides]] | +| 2 | Shallow Learning Algorithms | wk2-wk3 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L02-Regression-slides.html|L02-regression-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L03-Classification-slides.html|L03-classification-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L04-Trees-slides.html|L04-trees-and-ensemble-learning-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L05-Unsupervised-Learning-slides.html|L05-unsupervised-learning-slides]] | 
-| 3 | Deep Neural Networks | wk6-7 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-slides.html|L06-deep-learning-I-slides]], [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-II-slides.html|L06-Deep-Learning-II-slides]] | +| 3 | Deep Neural Networks | wk4 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-slides.html|L06-deep-learning-I-slides]], [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-II-slides.html|L06-Deep-Learning-II-slides]] | 
-| 4 | MDP & Reinforcement Learning | wk8 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-MDP-in-Finance-slides.html|L07a-MDP-slides]]\\  [[http://kktim.cn/teaching/mlinfin/MLinFin-L07-Advances-of-RL-in-Finance-slides.html|L07b-RL-slides]] | +| 4 | Literature Studies | wk5-wk8 | [[http://kktim.cn/teaching/mlinfin/MLinFin-LXX-Presentation-schedule-slides.html|Presentation Schedule]] | 
-| SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https://www.nber.org/papers/w31502|NBER Working Paper: Financial Machine Learning]] | +| 5 | MDP & Reinforcement Learning | by yourself | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-MDP-in-Finance-slides.html|L07a-MDP-slides]]\\  [[http://kktim.cn/teaching/mlinfin/MLinFin-L07-Advances-of-RL-in-Finance-slides.html|L07b-RL-slides]] | 
-| ST2: Machine Learning and Causal Inference | by yourself | [[https://www.bilibili.com/video/BV19Y4y117st/?vd_source=0a4eefc320d2637b710b584ebc1ce471|NBER SI 2015 Methods Lectures - Machine Learning for Economists]]\\ [[https://www.bilibili.com/video/BV1KY4y127Qs/?vd_source=0a4eefc320d2637b710b584ebc1ce471|2018 AEA Continuing Education Webcasts: Machine Learning and Econometrics (Susan Athey, Guido Imbens)]]\\ [[https://www.gsb.stanford.edu/faculty-research/centers-initiatives/sil/research/methods/ai-machine-learning/short-course|Machine Learning & Causal Inference: A Short Course]] | +| SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https://www.nber.org/papers/w31502|NBER Working Paper: Financial Machine Learning]] | 
 +| ST2: Machine Learning and Causal Inference | by yourself | [[https://www.bilibili.com/video/BV19Y4y117st/?vd_source=0a4eefc320d2637b710b584ebc1ce471|NBER SI 2015 Methods Lectures - Machine Learning for Economists]]\\ [[https://www.bilibili.com/video/BV1KY4y127Qs/?vd_source=0a4eefc320d2637b710b584ebc1ce471|2018 AEA Continuing Education Webcasts: Machine Learning and Econometrics (Susan Athey, Guido Imbens)]]\\ [[https://www.gsb.stanford.edu/faculty-research/centers-initiatives/sil/research/methods/ai-machine-learning/short-course|Machine Learning & Causal Inference: A Short Course]] | 
  
  
行 28: 行 29:
   - de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020.   - de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020.
   - Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022.   - Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022.
 +  - Denev A, Amen S. The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers[M]. John Wiley & Sons, 2020.
  
 ===== 考核方式 ===== ===== 考核方式 =====
  
   - 考核方式:课程项目   - 考核方式:课程项目
 +    - 项目展示:40%
 +    - 项目报告:60%
   - 课程项目内容(**同时**)包括:   - 课程项目内容(**同时**)包括:
-    - (全部或部分)复现经典论文 +    - 文献评述 
-    - 研究计划或综述+    - (全部或部分)复现**经典**论文/其他(拓展)结果 
 +    - 进一步研究计划 
 +    - 主要参考文献 
 +    - 附件(数据、代码等)
   - 要求   - 要求
-    - 内容必须**同时**与**机器学习**和**金融**密切相关+    - 内容必须**同时**与**机器学习**和**金融研究**密切相关
     - 无任何学术不端行为     - 无任何学术不端行为
-  - **DDL:15-Dec-2023, 20:00** +  - **DDL:15-Dec-2024, 20:00**:项目报告+PPT
-  - 提交内容课程报告+PPT+项目展示视频+
   - 提交方式:百度网盘    - 提交方式:百度网盘 
-{{:mycourse:mlinfin2023-real-final.jpg?800|}} 
  
 ===== 学习资源 ===== ===== 学习资源 =====
行 71: 行 76:
 **[[:literature_search|查找文献的方法]]** **[[:literature_search|查找文献的方法]]**
  
- [1] Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: An agenda, 2018: 507-547. 
-  
- [2] Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725. 
- 
- [3] Mullainathan S, Spiess J. Machine learning: an applied econometric approach[J]. Journal of Economic Perspectives, 2017, 31(2): 87-106. 
- 
- [4] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: https://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412 
- 
- [5] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. 
- 
- [6] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. 
- 
- [7] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315. 
- 
- [8] Amel-Zadeh, Amir and Calliess, Jan-Peter and Kaiser, Daniel and Roberts, Stephen, Machine Learning-Based Financial Statement Analysis (November 25, 2020). Available at SSRN: https://ssrn.com/abstract=3520684 or http://dx.doi.org/10.2139/ssrn.3520684 
- 
- [9] Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273. 
- 
- [10] Giglio, Stefano and Kelly, Bryan T. and Xiu, Dacheng, Factor Models, Machine Learning, and Asset Pricing (October 15, 2021). Available at SSRN: https://ssrn.com/abstract=3943284 or http://dx.doi.org/10.2139/ssrn.3943284 
- 
- [11] Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal of Econometrics, 2021, 222(1): 429-450. 
- 
- [12] Kelly B T, Pruitt S, Su Y. Characteristics are covariances: A unified model of risk and return[J]. Journal of Financial Economics, 2019, 134(3): 501-524. 
- 
- [13] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292. 
- 
- [14] Tobek O, Hronec M. Does it pay to follow anomalies research? machine learning approach with international evidence[J]. Journal of Financial Markets, 2021, 56: 100588. 
- 
- [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, The Factor Model Failure Puzzle (November 19, 2021). Available at SSRN: https://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588 
- 
- [16] Chen L, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2023. 
- 
- [17] Bryzgalova, Svetlana and Pelger, Markus and Zhu, Jason, Forest Through the Trees: Building Cross-Sections of Stock Returns (September 25, 2020). Available at SSRN: https://ssrn.com/abstract=3493458 or http://dx.doi.org/10.2139/ssrn.3493458 
- 
- [18] Giglio S, Liao Y, Xiu D. Thousands of alpha tests[J]. The Review of Financial Studies, 2021, 34(7): 3456-3496. 
- 
- [19] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021. 
- 
- [20] Jiang, Jingwen and Kelly, Bryan T. and Xiu, Dacheng, (Re-)Imag(in)ing Price Trends (December 1, 2020). Chicago Booth Research Paper No. 21-01, Available at SSRN: https://ssrn.com/abstract=3756587 or http://dx.doi.org/10.2139/ssrn.3756587 
- 
- [21] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2): 384-399. 
- 
- [22] Aït-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association, 2019, 114(525): 287-303. 
- 
- [23] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. 
- 
- [24] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv:2304.07619, 2023. 
- 
- [25] Yu S, Xue H, Ao X, et al. Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning[J]. arXiv preprint arXiv:2306.12964, 2023. 
- 
- [26] Blitz D, Hanauer M X, Hoogteijling T, et al. The Term Structure of Machine Learning Alpha[J]. Available at SSRN, 2023. 
- 
- [27] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503. 
- 
- [28] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. 
- 
- [29] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv:2401.00081, 2024. 
- 
- [30] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. 
- 
- [31] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, Fama-Miller Working Paper, Available at SSRN: https://ssrn.com/abstract=4835311 or http://dx.doi.org/10.2139/ssrn.4835311 
- 
- [32] Wolff D, Echterling F. Stock picking with machine learning[J]. Journal of Forecasting, 2024, 43(1): 81-102. 
- 
- [33] Alexander N, Scherer W. Using machine learning to forecast market direction with efficient frontier coefficients[J]. arXiv preprint arXiv:2404.00825, 2024. 
- 
- [34] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024. 
- 
---- 
  
 **Machine Learning, Economics and Finance** **Machine Learning, Economics and Finance**
行 153: 行 89:
  [5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023.  [5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023.
 Machine Learning and Asset Pricing Machine Learning and Asset Pricing
 +
 +**Machine Learning and Asset Pricing**
  
  [6] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2): 384-399.  [6] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2): 384-399.
行 172: 行 110:
  [14] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292.  [14] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292.
  
- [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, The Factor Model Failure Puzzle (November 19, 2021). Available at SSRN: https://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588+ [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, Messy Asset Pricing: Can AI Models Lead to a Consensus? (November 19, 2021). Available at SSRN: https://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588
  
  [16] Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089.  [16] Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089.
行 236: 行 174:
  [45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021.  [45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021.
  
- [46] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225.+ <del>[46] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. 
 +</del>
  
  [47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126.  [47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126.
行 262: 行 201:
  [51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, Fama-Miller Working Paper, Available at SSRN: https://ssrn.com/abstract=4835311 or http://dx.doi.org/10.2139/ssrn.4835311  [51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, Fama-Miller Working Paper, Available at SSRN: https://ssrn.com/abstract=4835311 or http://dx.doi.org/10.2139/ssrn.4835311
  
- [52] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. + [52] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv:2401.00081, 2024.
- +
- [53] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv:2401.00081, 2024.+
  
 **Machine Learning and Financial Risk Management** **Machine Learning and Financial Risk Management**
  
- [54] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: https://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412+ [53] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: https://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412
  
- [55] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47.+ [54] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47.
  
- [56] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186.+ [55] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186.
  
- [57] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27.+ [56] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27.
  
 **Machine Learning and Corporate Finance** **Machine Learning and Corporate Finance**
  
- [58] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264.+ [57] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264.
  
- [59] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315.+ [58] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315.
  
- [60] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878.+ [59] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878.
  
- [61] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642.+ [60] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642.
  
- [62] Babina T, Fedyk A, He A, et al. Artificial intelligence, firm growth, and product innovation[J]. Journal of Financial Economics, 2024, 151: 103745.+ [61] Babina T, Fedyk A, He A, et al. Artificial intelligence, firm growth, and product innovation[J]. Journal of Financial Economics, 2024, 151: 103745.
  
- [63] Gofman M, Jin Z. Artificial intelligence, education, and entrepreneurship[J]. The Journal of Finance, 2024, 79(1): 631-667.+ [62] Gofman M, Jin Z. Artificial intelligence, education, and entrepreneurship[J]. The Journal of Finance, 2024, 79(1): 631-667.
  
- [64] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024.+ [63] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024.
  
- [65] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030.+ [64] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030.
  
 **Machine Learning and Portfolio Management** **Machine Learning and Portfolio Management**
  
- [66] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021.+ [65] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021.
  
- [67] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54.+ [66] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54.
  
- [68] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815.+ [67] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815.
  
 **Other Topics** **Other Topics**
  
- [69] Dai R, Donohue L, Drechsler Q, et al. Dissemination, publication, and impact of finance research: When novelty meets conventionality[J]. Review of Finance, 2023, 27(1): 79-141.+ [68] Dai R, Donohue L, Drechsler Q, et al. Dissemination, publication, and impact of finance research: When novelty meets conventionality[J]. Review of Finance, 2023, 27(1): 79-141.
  
- [70] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503.+ [69] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503.
  
- [71] Sautner Z, Van Lent L, Vilkov G, et al. Firm‐level climate change exposure[J]. The Journal of Finance, 2023, 78(3): 1449-1498.+ [70] Sautner Z, Van Lent L, Vilkov G, et al. Firm‐level climate change exposure[J]. The Journal of Finance, 2023, 78(3): 1449-1498.
  
- [72] Rossi A G, Utkus S. The diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869.+ [71] Rossi A G, Utkus S. The diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869.
  
  
mycourse/machine_learning_and_finance.1725438355.txt.gz · 最后更改: 2024/09/04 16:25 由 kk

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki