mycourse:machine_learning_and_finance
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
mycourse:machine_learning_and_finance [2024/05/23 21:01] – [主要参考文献] kk | mycourse:machine_learning_and_finance [2024/09/30 12:00] (当前版本) – [教学计划] kk | ||
---|---|---|---|
行 11: | 行 11: | ||
| 序号 | 主题 | 时间 | Slides | | | 序号 | 主题 | 时间 | Slides | | ||
| 1 | A Brief Introduction to ML | wk1 | [[http:// | | 1 | A Brief Introduction to ML | wk1 | [[http:// | ||
- | | 2 | Shallow Learning Algorithms | wk2-wk5 | [[http:// | + | | 2 | Shallow Learning Algorithms | wk2-wk3 | [[http:// |
- | | 3 | Deep Neural Networks | wk6-7 | [[http:// | + | | 3 | Deep Neural Networks | wk4 | [[http:// |
- | | 4 | MDP & Reinforcement Learning | wk8 | [[http:// | + | | 4 | Literature Studies | wk5-wk8 | [[http:// |
- | | 5 | SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https:// | + | | 5 | MDP & Reinforcement Learning | by yourself |
- | | 6 | ST2: Machine Learning and Causal Inference | by yourself | [[https:// | + | | 6 | SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https:// |
+ | | 7 | ST2: Machine Learning and Causal Inference | by yourself | [[https:// | ||
行 28: | 行 29: | ||
- de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020. | - de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020. | ||
- Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022. | - Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022. | ||
+ | - Denev A, Amen S. The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers[M]. John Wiley & Sons, 2020. | ||
===== 考核方式 ===== | ===== 考核方式 ===== | ||
- 考核方式:课程项目 | - 考核方式:课程项目 | ||
+ | - 项目展示:40% | ||
+ | - 项目报告:60% | ||
- 课程项目内容(**同时**)包括: | - 课程项目内容(**同时**)包括: | ||
- | - (全部或部分)复现经典论文 | + | |
- | - 研究计划或综述 | + | |
+ | - 进一步研究计划 | ||
+ | - 主要参考文献 | ||
+ | - 附件(数据、代码等) | ||
- 要求 | - 要求 | ||
- | - 内容必须**同时**与**机器学习**和**金融**密切相关 | + | - 内容必须**同时**与**机器学习**和**金融研究**密切相关 |
- 无任何学术不端行为 | - 无任何学术不端行为 | ||
- | - **DDL:15-Dec-2023, 20:00** | + | - **DDL:15-Dec-2024, 20:00**:项目报告+PPT |
- | - 提交内容:课程报告+PPT+项目展示视频 | + | |
- 提交方式:百度网盘 | - 提交方式:百度网盘 | ||
- | {{: | ||
===== 学习资源 ===== | ===== 学习资源 ===== | ||
行 71: | 行 76: | ||
**[[: | **[[: | ||
- | [1] Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: | ||
- | |||
- | [2] Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725. | ||
- | [3] Mullainathan S, Spiess J. Machine | + | **Machine |
- | [4] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance | + | [1] Mullainathan S, Spiess J. Machine learning: an applied econometric approach[J]. Journal of Economic Perspectives, 2017, 31(2): 87-106. |
- | [5] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. | + | [2] Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: |
+ | |||
+ | [3] Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual | ||
- | [6] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): | + | [4] Goldstein |
+ | |||
+ | [5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. | ||
+ | Machine Learning and Asset Pricing | ||
- | [7] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315. | + | **Machine Learning and Asset Pricing** |
- | [8] Amel-Zadeh, Amir and Calliess, Jan-Peter and Kaiser, Daniel and Roberts, Stephen, Machine Learning-Based Financial Statement Analysis | + | [6] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2): 384-399. |
- | [9] Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review | + | [7] Aït-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal |
- | [10] Giglio, Stefano and Kelly, | + | [8] Kelly B T, Pruitt S, Su Y. Characteristics are covariances: |
- | [11] Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal | + | [9] Adämmer P, Schüssler R A. Forecasting the equity premium: mind the news![J]. Review |
- | [12] Kelly B T, Pruitt S, Su Y. Characteristics are covariances: | + | [10] Amel-Zadeh, Amir and Calliess, Jan-Peter |
- | [13] Kozak S, Nagel S, Santosh S. Shrinking | + | [11] Bryzgalova, Svetlana and Pelger, Markus and Zhu, Jason, Forest Through |
- | [14] Tobek O, Hronec M. Does it pay to follow anomalies research? | + | [12] Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. |
- | [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, The Factor Model Failure Puzzle | + | [13] Karolyi G A, Van Nieuwerburgh S. New methods for the cross-section of returns[J]. The Review of Financial Studies, 2020, 33(5): 1879-1890. |
- | [16] Chen L, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2023. | + | [14] Kozak S, Nagel S, Santosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292. |
- | [17] Bryzgalova, Svetlana | + | [15] Baba Yara, Fahiz and Boyer, Brian H. and Davis, Carter, Messy Asset Pricing: Can AI Models Lead to a Consensus? |
- | [18] Giglio S, Liao Y, Xiu D. Thousands of alpha tests[J]. The Review of Financial Studies, 2021, 34(7): 3456-3496. | + | [16] Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089. |
- | [19] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau | + | [17] Giglio |
- | [20] Jiang, Jingwen | + | [18] Giglio, Stefano |
- | [21] Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, | + | [19] Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal of Econometrics, |
- | [22] Aït-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association, 2019, 114(525): 287-303. | + | [20] Tobek O, Hronec M. Does it pay to follow anomalies research? machine learning approach with international evidence[J]. Journal of Financial Markets, 2021, 56: 100588. |
- | [23] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. | + | [21] Chen Y, Kelly B T, Xiu D. Expected returns and large language models[J]. Available at SSRN 4416687, 2022. |
- | [24] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability | + | [22] Dong X, Li Y, Rapach D E, et al. Anomalies |
- | [25] Yu S, Xue H, Ao X, et al. Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning[J]. arXiv preprint arXiv:2306.12964, 2023. | + | [23] Edmans A, Fernandez-Perez A, Garel A, et al. Music sentiment and stock returns around the world[J]. Journal of Financial Economics, 2022, 145(2): 234-254. |
+ | |||
+ | [24] Leippold M, Wang Q, Zhou W. Machine learning in the Chinese stock market[J]. Journal of Financial Economics, 2022, 145(2): 64-82. | ||
+ | |||
+ | [25] Bali T G, Beckmeyer H, Moerke M, et al. Option return predictability with machine learning and big data[J]. The Review of Financial Studies, 2023, 36(9): 3548-3602. | ||
[26] Blitz D, Hanauer M X, Hoogteijling T, et al. The Term Structure of Machine Learning Alpha[J]. Available at SSRN, 2023. | [26] Blitz D, Hanauer M X, Hoogteijling T, et al. The Term Structure of Machine Learning Alpha[J]. Available at SSRN, 2023. | ||
- | [27] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503. | + | [27] Brogaard J, Zareei A. Machine learning and the stock market[J]. Journal of Financial and Quantitative Analysis, 2023, 58(4): 1431-1472. |
+ | |||
+ | [28] Chen L, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2023. | ||
+ | |||
+ | [29] DeMiguel V, Gil-Bazo J, Nogales F J, et al. Machine learning and fund characteristics help to select mutual funds with positive alpha[J]. Journal of Financial Economics, 2023, 150(3): 103737. | ||
+ | |||
+ | [30] Drobetz W, Hollstein F, Otto T, et al. Estimating stock market betas via machine learning[J]. Journal of Financial and Quantitative Analysis, 2023: 1-56. | ||
+ | |||
+ | [31] Evgeniou T, Guecioueur A, Prieto R. Uncovering sparsity and heterogeneity in firm-level return predictability using machine learning[J]. Journal of Financial and Quantitative Analysis, 2023, 58(8): 3384-3419. | ||
+ | |||
+ | [32] Jiang J, Kelly B, Xiu D. (Re‐) Imag (in) ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249. | ||
+ | |||
+ | [33] Kaniel R, Lin Z, Pelger M, et al. Machine-learning the skill of mutual fund managers[J]. Journal of Financial Economics, 2023, 150(1): 94-138. | ||
+ | |||
+ | [34] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv: | ||
+ | |||
+ | [35] Van Binsbergen J H, Han X, Lopez-Lira A. Man versus machine learning: The term structure of earnings expectations and conditional biases[J]. The Review of financial studies, 2023, 36(6): 2361-2396. | ||
+ | |||
+ | [36] Yu S, Xue H, Ao X, et al. Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning[J]. arXiv preprint arXiv: | ||
+ | |||
+ | [37] Aleti S, Bollerslev T. News and Asset Pricing: A High-Frequency Anatomy of the SDF[J]. The Review of Financial Studies, 2024: hhae019. | ||
+ | |||
+ | [38] Alexander N, Scherer W. Using machine learning to forecast market direction with efficient frontier coefficients[J]. arXiv preprint arXiv: | ||
+ | |||
+ | [39] Cakici N, Fieberg C, Metko D, et al. Do anomalies really predict market returns? New data and new evidence[J]. Review of Finance, 2024, 28(1): 1-44. | ||
+ | |||
+ | [40] Dessaint O, Foucault T, Frésard L. Does alternative data improve financial forecasting? | ||
+ | |||
+ | [41] Kelly B, Malamud S, Zhou K. The virtue of complexity in return prediction[J]. The Journal of Finance, 2024, 79(1): 459-503. | ||
+ | |||
+ | [42] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. | ||
+ | |||
+ | [43] Shen Z, Xiu D. Can Machines Learn Weak Signals? | ||
+ | |||
+ | [44] Wolff D, Echterling F. Stock picking with machine learning[J]. Journal of Forecasting, | ||
+ | |||
+ | **Machine Learning and Alternative Data in Finance** | ||
+ | |||
+ | [45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021. | ||
+ | |||
+ | < | ||
+ | </ | ||
+ | |||
+ | [47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126. | ||
+ | |||
+ | [21] Chen Y, Kelly B T, Xiu D. Expected returns and large language models[J]. Available at SSRN 4416687, 2022. | ||
+ | |||
+ | [23] Edmans A, Fernandez-Perez A, Garel A, et al. Music sentiment and stock returns around the world[J]. Journal of Financial Economics, 2022, 145(2): 234-254. | ||
+ | |||
+ | [48] Obaid K, Pukthuanthong K. A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news[J]. Journal of Financial Economics, 2022, 144(1): 273-297. | ||
+ | |||
+ | [25] Bali T G, Beckmeyer H, Moerke M, et al. Option return predictability with machine learning and big data[J]. The Review of Financial Studies, 2023, 36(9): 3548-3602. | ||
+ | |||
+ | [32] Jiang J, Kelly B, Xiu D. (Re‐) Imag (in) ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249. | ||
+ | |||
+ | [49] Garcia D, Hu X, Rohrer M. The colour of finance words[J]. Journal of Financial Economics, 2023, 147(3): 525-549. | ||
+ | |||
+ | [34] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv: | ||
+ | |||
+ | [37] Aleti S, Bollerslev T. News and Asset Pricing: A High-Frequency Anatomy of the SDF[J]. The Review of Financial Studies, 2024: hhae019. | ||
+ | |||
+ | [50] Cao S, Jiang W, Wang J, et al. From man vs. machine to man+ machine: The art and AI of stock analyses[J]. Journal of Financial Economics, 2024, 160: 103910. | ||
+ | |||
+ | [40] Dessaint O, Foucault T, Frésard L. Does alternative data improve financial forecasting? | ||
+ | |||
+ | [51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, | ||
+ | |||
+ | < | ||
+ | |||
+ | [53] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv: | ||
+ | |||
+ | **Machine Learning and Financial Risk Management** | ||
+ | |||
+ | [54] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: | ||
+ | |||
+ | [55] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47. | ||
+ | |||
+ | [56] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186. | ||
+ | |||
+ | [57] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27. | ||
+ | |||
+ | **Machine Learning and Corporate Finance** | ||
+ | |||
+ | [58] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. | ||
+ | |||
+ | [59] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315. | ||
+ | |||
+ | [60] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878. | ||
+ | |||
+ | [61] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642. | ||
+ | |||
+ | [62] Babina T, Fedyk A, He A, et al. Artificial intelligence, | ||
+ | |||
+ | [63] Gofman M, Jin Z. Artificial intelligence, | ||
+ | |||
+ | [64] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024. | ||
+ | |||
+ | [65] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030. | ||
+ | |||
+ | **Machine Learning and Portfolio Management** | ||
+ | |||
+ | [66] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021. | ||
+ | |||
+ | [67] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54. | ||
+ | |||
+ | [68] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815. | ||
+ | |||
+ | **Other Topics** | ||
+ | |||
+ | [69] Dai R, Donohue L, Drechsler Q, et al. Dissemination, | ||
+ | |||
+ | [70] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503. | ||
- | [28] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. | + | [71] Sautner Z, Van Lent L, Vilkov G, et al. Firm‐level climate change exposure[J]. The Journal of Finance, 2023, 78(3): 1449-1498. |
- | [29] Potluru V K, Borrajo D, Coletta | + | [72] Rossi A G, Utkus S. The diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869. |
- | [30] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. | ||
- | [31] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, |
mycourse/machine_learning_and_finance.1716469260.txt.gz · 最后更改: 2024/05/23 21:01 由 kk