用户工具

站点工具


mycourse:machine_learning_and_finance

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
mycourse:machine_learning_and_finance [2024/05/23 21:01] – [主要参考文献] kkmycourse:machine_learning_and_finance [2024/09/30 12:00] (当前版本) – [教学计划] kk
行 11: 行 11:
 | 序号 | 主题 | 时间 | Slides | | 序号 | 主题 | 时间 | Slides |
 | 1 | A Brief Introduction to ML | wk1 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L01-Introduction-slides.html|L01-introduction-slides]] | | 1 | A Brief Introduction to ML | wk1 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L01-Introduction-slides.html|L01-introduction-slides]] |
-| 2 | Shallow Learning Algorithms | wk2-wk5 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L02-Regression-slides.html|L02-regression-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L03-Classification-slides.html|L03-classification-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L04-Trees-slides.html|L04-trees-and-ensemble-learning-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L05-Unsupervised-Learning-slides.html|L05-unsupervised-learning-slides]] | +| 2 | Shallow Learning Algorithms | wk2-wk3 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L02-Regression-slides.html|L02-regression-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L03-Classification-slides.html|L03-classification-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L04-Trees-slides.html|L04-trees-and-ensemble-learning-slides]]\\ [[http://kktim.cn/teaching/mlinfin/MLinFin-L05-Unsupervised-Learning-slides.html|L05-unsupervised-learning-slides]] | 
-| 3 | Deep Neural Networks | wk6-7 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-slides.html|L06-deep-learning-I-slides]], [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-II-slides.html|L06-Deep-Learning-II-slides]] | +| 3 | Deep Neural Networks | wk4 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-slides.html|L06-deep-learning-I-slides]], [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-Deep-Learning-II-slides.html|L06-Deep-Learning-II-slides]] | 
-| 4 | MDP & Reinforcement Learning | wk8 | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-MDP-in-Finance-slides.html|L07a-MDP-slides]]\\  [[http://kktim.cn/teaching/mlinfin/MLinFin-L07-Advances-of-RL-in-Finance-slides.html|L07b-RL-slides]] | +| 4 | Literature Studies | wk5-wk8 | [[http://kktim.cn/teaching/mlinfin/MLinFin-LXX-Presentation-schedule-slides.html|Presentation Schedule]] | 
-| SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https://www.nber.org/papers/w31502|NBER Working Paper: Financial Machine Learning]] | +| 5 | MDP & Reinforcement Learning | by yourself | [[http://kktim.cn/teaching/mlinfin/MLinFin-L06-MDP-in-Finance-slides.html|L07a-MDP-slides]]\\  [[http://kktim.cn/teaching/mlinfin/MLinFin-L07-Advances-of-RL-in-Finance-slides.html|L07b-RL-slides]] | 
-| ST2: Machine Learning and Causal Inference | by yourself | [[https://www.bilibili.com/video/BV19Y4y117st/?vd_source=0a4eefc320d2637b710b584ebc1ce471|NBER SI 2015 Methods Lectures - Machine Learning for Economists]]\\ [[https://www.bilibili.com/video/BV1KY4y127Qs/?vd_source=0a4eefc320d2637b710b584ebc1ce471|2018 AEA Continuing Education Webcasts: Machine Learning and Econometrics (Susan Athey, Guido Imbens)]]\\ [[https://www.gsb.stanford.edu/faculty-research/centers-initiatives/sil/research/methods/ai-machine-learning/short-course|Machine Learning & Causal Inference: A Short Course]] | +| SP1: Machine Learning & Asset Pricing & Financial Bigdata | by yourself | [[https://www.nber.org/papers/w31502|NBER Working Paper: Financial Machine Learning]] | 
 +| ST2: Machine Learning and Causal Inference | by yourself | [[https://www.bilibili.com/video/BV19Y4y117st/?vd_source=0a4eefc320d2637b710b584ebc1ce471|NBER SI 2015 Methods Lectures - Machine Learning for Economists]]\\ [[https://www.bilibili.com/video/BV1KY4y127Qs/?vd_source=0a4eefc320d2637b710b584ebc1ce471|2018 AEA Continuing Education Webcasts: Machine Learning and Econometrics (Susan Athey, Guido Imbens)]]\\ [[https://www.gsb.stanford.edu/faculty-research/centers-initiatives/sil/research/methods/ai-machine-learning/short-course|Machine Learning & Causal Inference: A Short Course]] | 
  
  
行 28: 行 29:
   - de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020.   - de Prado M M L. Machine learning for asset managers[M]. Cambridge University Press, 2020.
   - Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022.   - Ashwin Rao, Tikhon Jelvis. Foundations of Reinforcement Learning with Applications in Finance[M]. Stanford University, 2022.
 +  - Denev A, Amen S. The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers[M]. John Wiley & Sons, 2020.
  
 ===== 考核方式 ===== ===== 考核方式 =====
  
   - 考核方式:课程项目   - 考核方式:课程项目
 +    - 项目展示:40%
 +    - 项目报告:60%
   - 课程项目内容(**同时**)包括:   - 课程项目内容(**同时**)包括:
-    - (全部或部分)复现经典论文 +    - 文献评述 
-    - 研究计划或综述+    - (全部或部分)复现**经典**论文/其他(拓展)结果 
 +    - 进一步研究计划 
 +    - 主要参考文献 
 +    - 附件(数据、代码等)
   - 要求   - 要求
-    - 内容必须**同时**与**机器学习**和**金融**密切相关+    - 内容必须**同时**与**机器学习**和**金融研究**密切相关
     - 无任何学术不端行为     - 无任何学术不端行为
-  - **DDL:15-Dec-2023, 20:00** +  - **DDL:15-Dec-2024, 20:00**:项目报告+PPT
-  - 提交内容课程报告+PPT+项目展示视频+
   - 提交方式:百度网盘    - 提交方式:百度网盘 
-{{:mycourse:mlinfin2023-real-final.jpg?800|}} 
  
 ===== 学习资源 ===== ===== 学习资源 =====
行 71: 行 76:
 **[[:literature_search|查找文献的方法]]** **[[:literature_search|查找文献的方法]]**
  
- [1] Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: An agenda, 2018: 507-547. 
-  
- [2] Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725. 
  
- [3] Mullainathan S, Spiess J. Machine learning: an applied econometric approach[J]. Journal of Economic Perspectives, 201731(2): 87-106.+**Machine LearningEconomics and Finance**
  
- [4CohenSamuel Nand SnowDerek and SzpruchLukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRNhttps://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412+ [1Mullainathan SSpiess JMachine learning: an applied econometric approach[J]. Journal of Economic Perspectives201731(2): 87-106.
  
- [5Goldstein ISpatt C S, Ye MBig data in finance[J]. The Review of Financial Studies202134(7)3213-3225.+ [2Athey S. The impact of machine learning on economics[J]. The economics of artificial intelligence: An agenda2018: 507-547. 
 +  
 + [3] Athey S, Imbens G WMachine learning methods that economists should know about[J]. Annual Review of Economics201911685-725.
  
- [6Erel I, Stern L H, Tan C, et alSelecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264.+ [4Goldstein I, Spatt SYe MBig data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. 
 +  
 + [5] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research, 2023. 
 +Machine Learning and Asset Pricing
  
- [7] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315.+**Machine Learning and Asset Pricing**
  
- [8Amel-ZadehAmir and Calliess, Jan-Peter and KaiserDaniel and RobertsStephen, Machine Learning-Based Financial Statement Analysis (November 25, 2020). Available at SSRNhttps://ssrn.com/abstract=3520684 or http://dx.doi.org/10.2139/ssrn.3520684+ [6Aït-Sahalia YXiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics2017201(2): 384-399.
  
- [9Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies202033(5): 2223-2273.+ [7Aït-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association2019114(525): 287-303.
  
- [10Giglio, Stefano and Kelly, Bryan T. and XiuDachengFactor Models, Machine Learning, and Asset Pricing (October 15, 2021). Available at SSRNhttps://ssrn.com/abstract=3943284 or http://dx.doi.org/10.2139/ssrn.3943284+ [8] Kelly B TPruitt S, Su YCharacteristics are covariances: A unified model of risk and return[J]. Journal of Financial Economics2019134(3): 501-524.
  
- [11Gu SKelly B, Xiu DAutoencoder asset pricing models[J]. Journal of Econometrics2021222(1): 429-450.+ [9Adämmer PSchüssler R AForecasting the equity premium: mind the news![J]. Review of Finance202024(6): 1313-1355
  
- [12Kelly B TPruitt SSu Y. Characteristics are covariances: A unified model of risk and return[J]. Journal of Financial Economics2019134(3): 501-524.+ [10Amel-ZadehAmir and CalliessJan-Peter and KaiserDaniel and RobertsStephen, Machine Learning-Based Financial Statement Analysis (November 25, 2020). Available at SSRNhttps://ssrn.com/abstract=3520684 or http://dx.doi.org/10.2139/ssrn.3520684
  
- [13Kozak SNagel SSantosh S. Shrinking the cross-section[J]. Journal of Financial Economics, 2020, 135(2): 271-292.+ [11BryzgalovaSvetlana and PelgerMarkus and Zhu, Jason, Forest Through the Trees: Building Cross-Sections of Stock Returns (September 25, 2020). Available at SSRNhttps://ssrn.com/abstract=3493458 or http://dx.doi.org/10.2139/ssrn.3493458
  
- [14Tobek OHronec MDoes it pay to follow anomalies research? machine learning approach with international evidence[J]. Journal of Financial Markets202156100588.+ [12Gu SKelly B, Xiu DEmpirical asset pricing via machine learning[J]. The Review of Financial Studies202033(5)2223-2273.
  
- [15Baba YaraFahiz and Boyer, Brian Hand DavisCarterThe Factor Model Failure Puzzle (November 19, 2021). Available at SSRNhttps://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588+ [13Karolyi G AVan Nieuwerburgh SNew methods for the cross-section of returns[J]. The Review of Financial Studies202033(5): 1879-1890.
  
- [16Chen LPelger MZhu JDeep learning in asset pricing[J]. Management Science2023.+ [14Kozak SNagel SSantosh SShrinking the cross-section[J]. Journal of Financial Economics, 2020135(2): 271-292.
  
- [17BryzgalovaSvetlana and PelgerMarkus and ZhuJasonForest Through the TreesBuilding Cross-Sections of Stock Returns (September 252020). Available at SSRN: https://ssrn.com/abstract=3493458 or http://dx.doi.org/10.2139/ssrn.3493458+ [15Baba YaraFahiz and BoyerBrian H. and DavisCarterMessy Asset PricingCan AI Models Lead to a Consensus? (November 192021). Available at SSRN: https://ssrn.com/abstract=3967588 or http://dx.doi.org/10.2139/ssrn.3967588
  
- [18Giglio SLiao YXiu DThousands of alpha tests[J]. The Review of Financial Studies, 2021, 34(7): 3456-3496.+ [16Bianchi DBüchner MTamoni ABond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089.
  
- [19Duarte V, Fonseca J, Goodman A S, et alSimple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021.+ [17Giglio S, Liao Y, Xiu DThousands of alpha tests[J]. The Review of Financial Studies, 2021, 34(7): 3456-3496.
  
- [20JiangJingwen and Kelly, Bryan T. and Xiu, Dacheng, (Re-)Imag(in)ing Price Trends (December 12020). Chicago Booth Research Paper No. 21-01, Available at SSRN: https://ssrn.com/abstract=3756587 or http://dx.doi.org/10.2139/ssrn.3756587+ [18GiglioStefano and Kelly, Bryan T. and Xiu, Dacheng, Factor Models, Machine Learning, and Asset Pricing (October 152021). Available at SSRN: https://ssrn.com/abstract=3943284 or http://dx.doi.org/10.2139/ssrn.3943284
  
- [21Aït-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017201(2): 384-399.+ [19Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal of Econometrics, 2021222(1): 429-450.
  
- [22Aït-Sahalia YXiu DPrincipal component analysis of high-frequency data[J]. Journal of the American Statistical Association2019114(525)287-303.+ [20Tobek OHronec MDoes it pay to follow anomalies research? machine learning approach with international evidence[J]. Journal of Financial Markets202156100588.
  
- [23] Kelly B T, Xiu D. Financial machine learning[R]. National Bureau of Economic Research2023.+ [21Chen Y, Kelly B T, Xiu D. Expected returns and large language models[J]. Available at SSRN 44166872022.
  
- [24Lopez-Lira ATang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv:2304.076192023.+ [22Dong XLi Y, Rapach D E, et alAnomalies and the expected market return[J]. The Journal of Finance2022, 77(1): 639-681.
  
- [25Yu SXue HAo X, et al. Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning[J]. arXiv preprint arXiv:2306.12964, 2023.+ [23Edmans AFernandez-Perez AGarel A, et al. Music sentiment and stock returns around the world[J]. Journal of Financial Economics, 2022, 145(2)234-254. 
 + 
 + [24] Leippold M, Wang Q, Zhou W. Machine learning in the Chinese stock market[J]. Journal of Financial Economics, 2022, 145(2): 64-82. 
 + 
 + [25] Bali T G, Beckmeyer H, Moerke M, et al. Option return predictability with machine learning and big data[J]. The Review of Financial Studies, 2023, 36(9): 3548-3602.
  
  [26] Blitz D, Hanauer M X, Hoogteijling T, et al. The Term Structure of Machine Learning Alpha[J]. Available at SSRN, 2023.  [26] Blitz D, Hanauer M X, Hoogteijling T, et al. The Term Structure of Machine Learning Alpha[J]. Available at SSRN, 2023.
  
- [27] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503.+ [27] Brogaard J, Zareei A. Machine learning and the stock market[J]. Journal of Financial and Quantitative Analysis, 2023, 58(4): 1431-1472. 
 + 
 + [28] Chen L, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2023. 
 + 
 + [29] DeMiguel V, Gil-Bazo J, Nogales F J, et al. Machine learning and fund characteristics help to select mutual funds with positive alpha[J]. Journal of Financial Economics, 2023, 150(3): 103737. 
 + 
 + [30] Drobetz W, Hollstein F, Otto T, et al. Estimating stock market betas via machine learning[J]. Journal of Financial and Quantitative Analysis, 2023: 1-56. 
 + 
 + [31] Evgeniou T, Guecioueur A, Prieto R. Uncovering sparsity and heterogeneity in firm-level return predictability using machine learning[J]. Journal of Financial and Quantitative Analysis, 2023, 58(8): 3384-3419. 
 + 
 + [32] Jiang J, Kelly B, Xiu D. (Re‐) Imag (in) ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249. 
 + 
 + [33] Kaniel R, Lin Z, Pelger M, et al. Machine-learning the skill of mutual fund managers[J]. Journal of Financial Economics, 2023, 150(1): 94-138. 
 + 
 + [34] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv:2304.07619, 2023. 
 + 
 + [35] Van Binsbergen J H, Han X, Lopez-Lira A. Man versus machine learning: The term structure of earnings expectations and conditional biases[J]. The Review of financial studies, 2023, 36(6): 2361-2396. 
 + 
 + [36] Yu S, Xue H, Ao X, et al. Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning[J]. arXiv preprint arXiv:2306.12964, 2023. 
 + 
 + [37] Aleti S, Bollerslev T. News and Asset Pricing: A High-Frequency Anatomy of the SDF[J]. The Review of Financial Studies, 2024: hhae019. 
 + 
 + [38] Alexander N, Scherer W. Using machine learning to forecast market direction with efficient frontier coefficients[J]. arXiv preprint arXiv:2404.00825, 2024. 
 + 
 + [39] Cakici N, Fieberg C, Metko D, et al. Do anomalies really predict market returns? New data and new evidence[J]. Review of Finance, 2024, 28(1): 1-44. 
 + 
 + [40] Dessaint O, Foucault T, Frésard L. Does alternative data improve financial forecasting? the horizon effect[J]. The Journal of Finance, 2024, 79(3): 2237-2287. 
 + 
 + [41] Kelly B, Malamud S, Zhou K. The virtue of complexity in return prediction[J]. The Journal of Finance, 2024, 79(1): 459-503. 
 + 
 + [42] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. 
 + 
 + [43] Shen Z, Xiu D. Can Machines Learn Weak Signals?[J]. University of Chicago, Becker Friedman Institute for Economics Working Paper, 2024 (2024-29). 
 + 
 + [44] Wolff D, Echterling F. Stock picking with machine learning[J]. Journal of Forecasting, 2024, 43(1): 81-102. 
 + 
 +**Machine Learning and Alternative Data in Finance** 
 + 
 + [45] Bybee L, Kelly B, Manela A, et al. Business news and business cycles[J]. The Journal of Finance, 2021. 
 + 
 + <del>[46] Goldstein I, Spatt C S, Ye M. Big data in finance[J]. The Review of Financial Studies, 2021, 34(7): 3213-3225. 
 +</del> 
 + 
 + [47] Bose D, Cordes H, Nolte S, et al. Decision weights for experimental asset prices based on visual salience[J]. The Review of Financial Studies, 2022, 35(11): 5094-5126. 
 + 
 + [21] Chen Y, Kelly B T, Xiu D. Expected returns and large language models[J]. Available at SSRN 4416687, 2022. 
 + 
 + [23] Edmans A, Fernandez-Perez A, Garel A, et al. Music sentiment and stock returns around the world[J]. Journal of Financial Economics, 2022, 145(2): 234-254. 
 + 
 + [48] Obaid K, Pukthuanthong K. A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news[J]. Journal of Financial Economics, 2022, 144(1): 273-297. 
 + 
 + [25] Bali T G, Beckmeyer H, Moerke M, et al. Option return predictability with machine learning and big data[J]. The Review of Financial Studies, 2023, 36(9): 3548-3602. 
 + 
 + [32] Jiang J, Kelly B, Xiu D. (Re‐) Imag (in) ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249. 
 + 
 + [49] Garcia D, Hu X, Rohrer M. The colour of finance words[J]. Journal of Financial Economics, 2023, 147(3): 525-549. 
 + 
 + [34] Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? return predictability and large language models[J]. arXiv preprint arXiv:2304.07619, 2023. 
 + 
 + [37] Aleti S, Bollerslev T. News and Asset Pricing: A High-Frequency Anatomy of the SDF[J]. The Review of Financial Studies, 2024: hhae019. 
 + 
 + [50] Cao S, Jiang W, Wang J, et al. From man vs. machine to man+ machine: The art and AI of stock analyses[J]. Journal of Financial Economics, 2024, 160: 103910. 
 + 
 + [40] Dessaint O, Foucault T, Frésard L. Does alternative data improve financial forecasting? the horizon effect[J]. The Journal of Finance, 2024, 79(3): 2237-2287. 
 + 
 + [51] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, Fama-Miller Working Paper, Available at SSRN: https://ssrn.com/abstract=4835311 or http://dx.doi.org/10.2139/ssrn.4835311 
 + 
 + <del>[52] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791.</del> 
 + 
 + [53] Potluru V K, Borrajo D, Coletta A, et al. Synthetic Data Applications in Finance[J]. arXiv preprint arXiv:2401.00081, 2024. 
 + 
 +**Machine Learning and Financial Risk Management** 
 + 
 + [54] Cohen, Samuel N. and Snow, Derek and Szpruch, Lukasz, Black-Box Model Risk in Finance (February 9, 2021). Available at SSRN: https://ssrn.com/abstract=3782412 or http://dx.doi.org/10.2139/ssrn.3782412 
 + 
 + [55] Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal? The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47. 
 + 
 + [56] Luong T M, Scheule H, Wanzare N. Impact of mortgage soft information in loan pricing on default prediction using machine learning[J]. International Review of Finance, 2023, 23(1): 158-186. 
 + 
 + [57] Koelbl M, Laschinger R, Steininger B I, et al. Revealing the risk perception of investors using machine learning[J]. The European Journal of Finance, 2024: 1-27. 
 + 
 +**Machine Learning and Corporate Finance** 
 + 
 + [58] Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. 
 + 
 + [59] Li K, Mai F, Shen R, et al. Measuring corporate culture using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3265-3315. 
 + 
 + [60] Bubb R, Catan E M. The party structure of mutual funds[J]. The Review of Financial Studies, 2022, 35(6): 2839-2878. 
 + 
 + [61] Cao S, Jiang W, Yang B, et al. How to talk when a machine is listening: Corporate disclosure in the age of AI[J]. The Review of Financial Studies, 2023, 36(9): 3603-3642. 
 + 
 + [62] Babina T, Fedyk A, He A, et al. Artificial intelligence, firm growth, and product innovation[J]. Journal of Financial Economics, 2024, 151: 103745. 
 + 
 + [63] Gofman M, Jin Z. Artificial intelligence, education, and entrepreneurship[J]. The Journal of Finance, 2024, 79(1): 631-667. 
 + 
 + [64] Halskov K. Improving Merger Arbitrage Returns with Machine Learning[J]. Available at SSRN, 2024. 
 + 
 + [65] Hansen J H, Siggaard M V. Double machine learning: Explaining the post-earnings announcement drift[J]. Journal of Financial and Quantitative Analysis, 2024, 59(3): 1003-1030. 
 + 
 +**Machine Learning and Portfolio Management** 
 + 
 + [66] Duarte V, Fonseca J, Goodman A S, et al. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle[R]. National Bureau of Economic Research, 2021. 
 + 
 + [67] Pinelis M, Ruppert D. Machine learning portfolio allocation[J]. The Journal of Finance and Data Science, 2022, 8: 35-54. 
 + 
 + [68] Chen A Y, McCoy J. Missing values handling for machine learning portfolios[J]. Journal of Financial Economics, 2024, 155: 103815. 
 + 
 +**Other Topics** 
 + 
 + [69] Dai R, Donohue L, Drechsler Q, et al. Dissemination, publication, and impact of finance research: When novelty meets conventionality[J]. Review of Finance, 2023, 27(1): 79-141. 
 + 
 + [70] Hambly B, Xu R, Yang H. Recent advances in reinforcement learning in finance[J]. Mathematical Finance, 2023, 33(3): 437-503.
  
- [28Murray SXia YXiao HCharting by machines[J]. Journal of Financial Economics2024153103791.+ [71Sautner ZVan Lent LVilkov G, et alFirm‐level climate change exposure[J]. The Journal of Finance202378(3)1449-1498.
  
- [29Potluru V K, Borrajo D, Coletta A, et alSynthetic Data Applications in Finance[J]. arXiv preprint arXiv:2401.00081, 2024.+ [72Rossi GUtkus SThe diversification and welfare effects of robo-advising[J]. Journal of Financial Economics, 2024, 157: 103869.
  
- [30] Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. 
  
- [31] Kim, Alex G. and Muhn, Maximilian and Nikolaev, Valeri V., Financial Statement Analysis with Large Language Models (May 20, 2024). Chicago Booth Research Paper Forthcoming, Fama-Miller Working Paper, Available at SSRN: https://ssrn.com/abstract=4835311 or http://dx.doi.org/10.2139/ssrn.4835311 
mycourse/machine_learning_and_finance.1716469260.txt.gz · 最后更改: 2024/05/23 21:01 由 kk

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki