公式:
方差, 或者风险, 是对收益的波动性或者其分散程度的度量
假设
因此,其方差可以表示为
组合收益:
组合风险:
因此,其标准差为
|
![]() 来源: 2022 CFA Program curriculum Reading 49 |
|
|
stk1 = df.loc[df.ts_code == '600519.SH', ['ts_code','trade_date','pct_chg']]
stk2 = df.loc[df.ts_code == '000333.SZ', ['ts_code','trade_date','pct_chg']]
stk3 = df.loc[df.ts_code == '000001.SZ', ['ts_code','trade_date','pct_chg']]
stk = pd.merge(stk1,stk2,on = 'trade_date')
stk = pd.merge(stk,stk3,on = 'trade_date')
stk_return = []
stk_return.append(stk.pct_chg_x.mean())
stk_return.append(stk.pct_chg_y.mean())
stk_return.append(stk.pct_chg.mean())
stk_risk = []
stk_risk.append(stk.pct_chg_x.var())
stk_risk.append(stk.pct_chg_y.var())
stk_risk.append(stk.pct_chg.var())
stk_risk=list(np.sqrt(stk_risk))
|
![]() |
假设
令
有多于2个风险资产时,所有可行组合的风险和收益的关系不再能够由一条曲线表示。
|
![]() |
或者
或者
集合
MVO的解
The model is too naive for practical purpose
组合管理的均值方差分析 |
|
来源: 2022 CFA Program curriculum Reading 49
来源: 2022 CFA Program curriculum Reading 49
来源: 2022 CFA Program curriculum Reading 49
两基金分离定理(two-fund separation theorem): 所有的投资者,不管其喜好、风险偏好、初始财富,都将只持有两个组合(或基金):一个无风险资产和一个最优的风险资产。
最优的风险资产(组合)是什么呢?
最优风险组合是市场组合(market portfolio)
投资者只会投资最优风险组合,不在最优风险组合中的资产价值为0,因此最优风险组合包括所有证券
处于均衡状态时最优风险组合中个证券所占比例必须等于其市值占市场总市值的比例
供给-需求分析
|
|
|
![]() |
风险规避与组合选择 |
|
假设投资者面对以下两种选择:
|
投资者对风险的态度可分为以下几类:
|
|
![]() 来源: 2022 CFA Program curriculum Reading 49 |
来源: 2022 CFA Program curriculum Reading 49
风险规避与组合选择 |
|
假设投资组合由一个无风险资产和一个风险资产组成。组合的收益和方差为: 由此,我们可以得到资本配置线(CAL), CAL类似消费者均衡分析中的预算线 |
![]() 来源: 2022 CFA Program curriculum Reading 49 |
来源: 2022 CFA Program curriculum Reading 49
假设投资者的效用函数为:
来源: 2022 CFA Program curriculum Reading 49
Mathematics of MPT |
|
Primal, Lagrangian Function, & Dual
Optimality Conditions for QP
The vectors
For a QP in standard form, the optimality conditions can be written as follows:
Mathematics of MPT |
|
Analytical Solutions
There exist two efficient portfolios (funds), namely
there exists a fully invested efficient portfolio (fund) namely
such that every efficient portfolio - that is, every solution for some
Mathematics of MPT |
|
Discussion: Can we improve the above constraint?
Estimation of Inputs to Mean–Variance Models
Model the sensitivity
Solver
Performance Analysis
We will cover most of the above topics in later lectures.
|
|
|
![]() |
|
![]() |
课后阅读与练习
|
拓展学习
|
[1] Markowitz H M. Portfolio selection[J]. The Journal of finance, 1952, 7(1): 77-91.
[2] Markowitz H M. Portfolio selection[M]//Portfolio selection. Yale university press, 1968.
[3] Markowitz H M. Mean—variance analysis[M]//Finance. Palgrave Macmillan, London, 1989: 194-198.
[4] Cornuejols G, Tütüncü R. Optimization methods in finance[M]. Cambridge University Press; 2006 Dec 21.
[5] Boyd S, Boyd SP, Vandenberghe L. Convex optimization[M]. Cambridge university press; 2004 Mar 8.
[7] Rubinstein M. Markowitz's" portfolio selection": A fifty-year retrospective[J]. The Journal of finance, 2002, 57(3): 1041-1045.
[10] Li B, Hoi S C H. Online portfolio selection: A survey[J]. ACM Computing Surveys (CSUR), 2014, 46(3): 1-36.
[11] Gomes F. Portfolio choice over the life cycle: A survey[J]. Annual Review of Financial Economics, 2020, 12: 277-304.
[12] Cochrane JH. Asset pricing: Revised edition[M]. Princeton university press; 2009 Apr 11.
[13] Markowitz HM. The early history of portfolio theory: 1600–1960[J]. Financial analysts journal. 1999 Jul 1;55(4):5-16.
[14] Roy AD. Safety first and the holding of assets. Econometrica: Journal of the econometric society. 1952 Jul 1:431-49.
<img align="center" style="padding-right:10px;" width=80% src="../myfig/portfolio_assetpricing_emh/story.jpg">
[^1]
[^1]:Kolm P N, Reha Tütüncü, Fabozzi F J. 60 Years of portfolio optimization: Practical challenges and current trends[J]. European Journal of Operational Research, 2014, 234(2):356--371.