专题: 期权拓展与应用



期权定价的拓展

指数期权与货币期权

指数期权

中金所沪深300股指期权合约表

指数期权的用途:组合保险}

组合保险:例一

组合保险:例二

Value of Index in 3 months Expected Portfolio Value in 3 months ($)
1,080 570,000
1,040 530,000
1,000 490,000
960 450,000
920 410,000

外汇期权

期权性质:期权价格的下限

期权性质:看跌期权-看涨期权平价关系

定价


期货期权

概念

期货期权的特性

期权性质:看跌期权-看涨期权平价关系

期权性质:期权价格的下限

定价:二叉树

定价:Black's Model


期权定价的应用

Estimating Default Probability

The Merton Model

Pricing Equity and Debt

Firm value follows the geometric Brownian motion
dV=μVdt+σvdzdV=\mu Vdt+\sigma vdz
The value of firm can be decompose in to the value of equity (SS) and the value of debt (BB). The corporate bond price is obtained as
B=F(V,t), F(V,T)=min(V,BF), BF=KB=F(V,t),\text{ }F(V,T)=\min(V,B_F),\text{ }B_F=K
The equity value is
S=f(V,t), f(V,T)=max(VBF,0)S=f(V,t),\text{ }f(V,T)=\max(V-B_F,0)

Stock Valuation
S=Call=VN(d1)KerτN(d2)S=\text{Call}=VN(d_1)-Ke^{-r\tau}N(d_2)
where d1=ln(V/Kerτ)στ+στ2, d2=d1στd_1=\frac{\ln(V/Ke^{-r\tau})}{\sigma\sqrt{\tau}}+\frac{\sigma\sqrt{\tau}}{2},\text{ }d_2=d_1-\sigma\sqrt{\tau}

Firm Volatility
σV=(1/Δ)σS(S/V)\sigma_V=(1/\Delta)\sigma_S(S/V)

Bond Valuation
B=Risk-free bondPutB/Kerτ=N(d2)+(V/Kerτ)N(d2)B=\text{Risk-free bond}-\text{Put}\Longrightarrow B/Ke^{-r\tau}=N(d_2)+(V/Ke^{-r\tau})N(-d_2)

Risk-Neutral Dynamics of Default
1N(d2)=N(d2)1-N(d_2)=N(-d_2)

Pricing Credit Risk
PD=N[z]=N{[ln(K/V)δτ+0.5σ2τ]/[στ]}\text{PD}=N[z]=N\{[\ln(K/V)-\delta\tau+0.5\sigma^2\tau]/[\sigma\sqrt{\tau}]\}

Credit Option Valuation
Put=Kerτ{KerτN(d2)+V[1N(d1)]}=V[N(d1)]+Kerτ[N(d2)]\text{Put}=Ke^{-r\tau}-\{Ke^{-r\tau}N(d_2)+V[1-N(d_1)]\}=-V[N(-d_1)]+Ke^{-r\tau}[N(-d_2)]

Applying the Merton Model

A Detailed Example


Real Options

An Alternative to the NPV Rule for Capital Investments

The Problem with using NPV to Value Options

Correct Discount Rates are Counter-Intuitive

General Approach to Valuation

Example (36.1)

The cost of renting commercial real estate in a certain city is quoted as the amount that would be paid per square foot per year in a new 5-year rental agreement. The current cost is $30 per square foot. The expected growth rate of the cost is 12% per annum, the volatility of the cost is 20% per annum, and its market price of risk is 0.3. A company has the opportunity to pay $1 million now for the option to rent 100,000 square feet at $35 per square foot for a 5-year period starting in 2 years. The risk-free rate is 5% per annum (assumed constant).

How to evaluate the option?

Example (36.1)

Define VV as the quoted cost per square foot of office space in 2 years. Assume that rent is paid annually in advance. The payoff from the option is

100,000Amax(V35,0)100,000A\max(V-35,0)

where AA is an annuity factor given by

A=1+i=141×e0.05×i=4.5355A=1+\sum_{i=1}^41\times e^{-0.05\times i}=4.5355

The expected payoff in a risk-neutral world is therefore

100,000×4.5355×E^[max(V35,0)]=453,550×E^[max(V35,0)]100,000\times4.5355\times\hat{E}\left[\max(V-35,0)\right]=453,550\times\hat{E}\left[\max(V-35,0)\right]

According to the Black-Scholes formula, the value of the option is

453,550[E^[V]N(d1)35N(d2)]453,550\left[\hat{E}[V]N(d_1)-35N(d_2)\right]

where

d1=ln[E^(V)/35]+0.22×2/20.22d_1=\frac{\ln\left[\hat{E}(V)/35\right]+0.2^2\times2/2}{0.2\sqrt{2}}

and

d2=ln[E^(V)/35]0.22×2/20.22d_2=\frac{\ln\left[\hat{E}(V)/35\right]-0.2^2\times2/2}{0.2\sqrt{2}}

The expected growth rate in the cost of commercial real estate in a risk-neutral world is mλsm-\lambda s, where mm is the real-world growth rate, ss is the volatility, and λ\lambda is the market price of risk. In this case, m=0.12m=0.12, s=0.2s=0.2, and λ=0.3\lambda=0.3, so that the expected risk-neutral growth rate is 0.06, or 6%, per year. It follows that E^[V]=30e0.06×2=33.82\hat{E}[V]=30e^{0.06\times2}=33.82. Substituting this in the expression above gives the expected payoff in a risk-neutral world as $1.5015 million. Discounting at the risk-free rate the value of the option is 1.5015e0.05×2=$1.35861.5015e^{-0.05\times2}=\$1.3586 million.

This shows that it is worth paying $1 million for the option.

Extension to Many Underlying Variables

Estimating the Market Price of Risk

Types of Options

Example (Business Snapshot 36.1)

Example (page 795)

The Process for the Commodity Price

Estimating the Market Price of Risk Using CAPM (equation 36.2, page 792)

Node A B C D E F G H I
pup_u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pmp_m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pdp_d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Valuation of Base Project; Fig 36.2

Node A B C D E F G H I
pup_u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pmp_m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pdp_d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Valuation of Option to Abandon; Fig 36.3(No Salvage Value; No Further Payments)

Node A B C D E F G H I
pup_u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pmp_m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pdp_d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Value of Expansion Option; Fig 36.4 (Company Can Increase Scale of Project by 20% for $2 million)

Node A B C D E F G H I
pup_u 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pmp_m 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pdp_d 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

Appendix: Interest Rate Tree

Interest Rate Trees vs Stock Price Trees

Two-Step Tree Example

Payoff after 2 years is max[100(r0.11),0]\max[100(r-0.11), 0], pu=0.25p_u=0.25; pm=0.5p_m=0.5; pd=0.25p_d=0.25; Time step=1yr

B: (0.25×3+0.50×1+0.25×0)e0.12×1(0.25\times3+0.50\times1+0.25\times0)e^{-0.12\times1}

A: (0.25×1.11+0.50×0.23+0.25×0)e0.10×1(0.25\times1.11+0.50\times0.23+0.25\times0)e^{-0.10\times1}

Alternative Branching Processes in a Trinomial Tree

Procedure for Building Tree

dr=[θ(t)ar]dt+σdzdr=[\theta(t)-ar]dt+\sigma dz

Example

Suppose that σ=0.01\sigma=0.01, a=0.1a=0.1, and Δt=1yr\Delta t=1\text{yr}. The zero-rate curve is given below.

Maturity Zero Rate
0.5 3.430
1.0 3.824
1.5 4.183
2.0 4.512
2.5 4.812
3.0 5.086

Building the First Tree for the Δt\Delta t rate RR

The First Tree

Shifting Notes

The Final Tree

Formulas for α\alpha's and QQ's}\footnotesize

To express the approach more formally, suppose that the Qi,jQ_{i,j} have been determined for im (m>0)i\leq m\ (m>0). The next step is to determine αm\alpha_m so that the tree correctly prices a zero-coupon bond maturing at (m+1)Δt(m+1)\Delta t. The interest rate at node (m,j)(m,j) is αm+jΔR\alpha_m+j\Delta R,so that the price of a zero-coupon bond maturing at time (m+1)Δt(m+1)\Delta t is given by
Pm+1=j=nmnmQm,jexp[(αm+jΔR)]ΔtP_{m+1}=\sum_{j=-n_m}^{n_m}Q_{m,j}\exp[-(\alpha_m+j\Delta R)]\Delta t
where nmn_m is the number of nodes on each side of the central node at time mΔtm\Delta t. The solution to this equation is
αm=lnj=nmnmQm,jejΔRΔtlnPm+1Δt\alpha_m=\frac{\ln\sum_{j=-n_m}^{n_m}Q_{m,j}e^{-j\Delta R\Delta t}-\ln P_{m+1}}{\Delta t}
Once αm\alpha_m has been determined, the Qi,jQ_{i,j} for i=m+1i=m+1 can be calculated using
Qm+1,j=kQm,kq(k,j)exp[(αm+kΔR)Δt]Q_{m+1,j}=\sum_{k}Q_{m,k}q(k,j)\exp[-(\alpha_m+k\Delta R)\Delta t]
where q(k,j)q(k,j) is the probability of moving from node (m,k)(m,k) to node (m+1,j)(m+1,j) and the summation is taken over all values of kk for which this is nonzero.


Exotics

Types of Exotics

Packages Barrier options
Perpetual American calls and puts Binary options
Nonstandard American options Lookback options
Gap options Shout options
Forward start options Asian options
Cliquet options Options to exchange one asset for another
Compound options Options involving several assets
Chooser options Volatility and Variance swaps

Packages

Perpetual American Options

Non-Standard American Options (page 598)

Gap Options

Forward Start Options (page 600)

Cliquet Option

Compound Option (page 600-601)

Chooser Option ``As You Like It'' (page 601-602)

At time T1T_1 the value is max(c,p)\max(c,p). From put-call parity
p=c+er(T2T1)KS1eq(T2T1)p=c+e^{-r(T_2-T_1)}K-S_1e^{-q(T_2-T_1)}
The value at time T1T_1 is therefore
c+eq(T2T1)max(0,Ke(rq)(T2T1)S1)c+e^{-q(T_2-T_1)}\max\left(0,Ke^{-(r-q)(T_2-T_1)}-S_1\right)
This is a call maturing at time T2T_2 plus a position in a put maturing at time T1T_1.

Barrier Options (page 602-604)

Binary Options (page 604-605)

Lookback Options (page 605-607)

Shout Options (page 607)

Asian Options (page 608-609)

Exchange Options (page 609-610)

Basket Options (page 610-611)

Volatility and Variance Swaps

VIX Index (page 613-614)

How Difficult is it to Hedge Exotic Options?

Static Options Replication(Section 26.17, page 614-616)

Example

We might try to match the following points on the boundary

We can do this as follows:

Using Static Options Replication