L11 期权定价:B-S-M模型



Wiener Processes and Itô's Lemma

Model the Dynamics of Stock Prices / Returns

ABC of Stochastic Processes

Variances & Standard Deviations

A Wiener Process

Norbert Wiener (诺伯特\cdot维纳)

Brownian Motion

Louis Bachelier (路易斯\cdot巴舍利耶)

Generalized Wiener Processes

Generalized Wiener Process

A Model for Stock Prices


Itoˆ\^{o}'s lemma

Kiyosi Itoˆ\^{o} (伊藤清)

Itoˆ\^{o}'s lemma


The Black-Scholes-Merton Model

The Stock Price Assumption

The Stock Price Assumption

Continuously Compounded Return

Volatility


The Black-Scholes-Merton Model

Black-Scholes-Merton: The Big Idea

The Derivation of the Black-Scholes-Merton Differential Equation

Since the portfolio is risk-free, we have
ΔΠ=rΠΔt\Delta\Pi=r\Pi\Delta t
Δf+fSΔS=r(f+fSS)Δt-\Delta f+\frac{\partial f}{\partial S}\Delta S=r\left(-f+\frac{\partial f}{\partial S}S\right)\Delta t
So, the Black-Scholes-Merton Differential Equation is
ft+rSfS+12σ2S22fS2=rf\frac{\partial f}{\partial t}+rS\frac{\partial f}{\partial S}+\frac{1}{2}\sigma^2S^2\frac{\partial^2 f}{\partial S^2}=rf

Black-Scholes-Merton Pricing for Options

c=S0N(d1)KerTN(d2)c=S_0N(d_1)-Ke^{-rT}N(d_2)
p=KerTN(d2)S0N(d1)p=Ke^{-rT}N(-d_2)-S_0N(d_1)
where
d1=ln(S0/K)+(r+σ2/2)TσTd_1=\frac{\ln(S_0/K)+(r+\sigma^2/2)T}{\sigma\sqrt{T}}
d2=ln(S0/K)+(rσ2/2)TσT=d1σTd_2=\frac{\ln(S_0/K)+(r-\sigma^2/2)T}{\sigma\sqrt{T}}=d_1-\sigma\sqrt{T}

Understanding Black-Scholes

The formula
c=erTN(d2)(S0erTN(d1)/N(d2)K)c=e^{-rT}N(d_2)\left(S_0e^{rT}N(d_1)/N(d_2)-K\right)


Risk-Neutral Valuation

Risk-Neutral Valuation


Option Sensitivities: Greeks

Greeks

The Taylor Expansion
df=fSdS+122fS2dS2+frdr+frdr+fσdσ+fτdτ+df=\frac{\partial f}{\partial S}dS+\frac{1}{2}\frac{\partial^2 f}{\partial S^2}dS^2+\frac{\partial f}{\partial r}dr+\frac{\partial f}{\partial r^*}dr^*+\frac{\partial f}{\partial \sigma}d\sigma+\frac{\partial f}{\partial \tau}d\tau+\dots


课后阅读与练习

课后阅读与练习