用户工具

站点工具


paper:predictive_to_prescriptive_analytics

From Predictive to Prescriptive Analytics

对本文的总体评价为:(1-5分,5分最高)

可参考以下标准:

  • 5分:佳作、开创性成果
  • 4分:合格的优秀论文、可直接接收发表
  • 3分:小改(Minor)后可接收
  • 2分:需要大改(Major)
  • 1分:价值有限,即使修改后亦不能发表
  • 0分:本wiki不收录0分的论文。。。

有必要时,可以在文中任何地方插入你的签名。

文献基本信息

标题

From Predictive to Prescriptive Analytics

作者

  1. Dimitris Bertsimas, MIT
  2. Nathan Kallus, Cornell University

出版年份

2019

来源

关键词

摘要

We combine ideas from machine learning (ML) and operations research and management science (OR/MS) in developing a framework, along with specific methods, for using data to prescribe optimal decisions in OR/MS problems. In a departure from other work on data-driven optimization, we consider data consisting, not only of observations of quantities with direct effect on costs/revenues, such as demand or returns, but also predominantly of observations of associated auxiliary quantities. The main problem of interest is a conditional stochastic optimization problem, given imperfect observations, where the joint probability distributions that specify the problem are unknown. We demonstrate how our proposed methods are generally applicable to a wide range of decision problems and prove that they are computationally tractable and asymptotically optimal under mild conditions, even when data are not independent and identically distributed and for censored observations. We extend these to the case in which some decision variables, such as price, may affect uncertainty and their causal effects are unknown. We develop the coefficient of prescriptiveness P to measure the prescriptive content of data and the efficacy of a policy from an operations perspective. We demonstrate our approach in an inventory management problem faced by the distribution arm of a large media company, shipping 1 billion units yearly. We leverage both internal data and public data harvested from IMDb, Rotten Tomatoes, and Google to prescribe operational decisions that outperform baseline measures. Specifically, the data we collect, leveraged by our methods, account for an 88% improvement as measured by our coefficient of prescriptiveness.

引用方式

Bertsimas, Dimitris, and Nathan Kallus. “From predictive to prescriptive analytics.” Management Science (2019).

链接

评阅意见

文献简介

1. 论文是关于什么的?[请提供该论文的简要摘要。]

文献评价

2. 这篇论文的长处和短处是什么?[请以以下角度评述:(a)创新(研究问题、建模、方法等);(b)相关性(研究问题、发现等);(c)严谨性(适当的方法、分析的正确性等)]

创新性

研究问题、建模、方法等

相关性

研究问题、发现

严谨性

适当的方法、分析的正确性等

需改改进之处

3.如果有的话,潜在改进的主要地方是什么?[如果这些关键要求和建议能够被适当处理,请重点关注能使文章发表的关键要求和建议。如果你看到不可逾越的障碍,请清楚地描述你的担忧。如果能为编辑和作者提供具体有建设性的意见最好不过了,并在可能的情况下,提出可行的建议。同样,应避免含糊不清和/或含糊不清的批评。]

需要小改的地方

4.如果有的话,潜在改进的微小地方是什么?[再次,请具体说明。]

进一步研究的可能与方向

5.有没有机会做一项新的研究?

其他评价

paper/predictive_to_prescriptive_analytics.txt · 最后更改: 2023/11/10 12:13 由 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki