目录
Deep Learning in Finance
对本文的总体评价为:分
可参考以下标准:
- 5分:佳作、开创性成果
- 4分:合格的优秀论文、可直接接收发表
- 3分:小改(Minor)后可接收
- 2分:需要大改(Major)
- 1分:价值有限,即使修改后亦不能发表
- 0分:本wiki不收录0分的论文。。。
有必要时,可以在文中任何地方插入你的签名。
文献基本信息
标题
Deep Learning in Finance
作者
- J. B. Heaton, Conjecture LLC, jb@conjecturellc.com
- N. G. Polson, Booth School of Business, University of Chicago, ngp@chicagobooth.edu
- J. H. Witte, Department of Mathematics, University College London, and Conjecture LLC, jhw@conjecturellc.com
出版年份
2016
来源
ArXiv
关键词
Deep Learning, Machine Learning, Big Data, Artificial Intelligence, LSTM Models, Finance, Asset Pricing, Volatility
摘要
We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems – such as those presented in designing and pricing securities, constructing portfolios, and risk management – often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory.
引用方式
Heaton, J. B., Nicholas G. Polson, and Jan Hendrik Witte. “Deep learning in finance.” arXiv preprint arXiv:1602.06561 (2016).
链接
评阅意见
文献简介
1. 论文是关于什么的?[请提供该论文的简要摘要。]
文献评价
2. 这篇论文的长处和短处是什么?[请以以下角度评述:(a)创新(研究问题、建模、方法等);(b)相关性(研究问题、发现等);(c)严谨性(适当的方法、分析的正确性等)]
创新性
研究问题、建模、方法等
相关性
研究问题、发现
严谨性
适当的方法、分析的正确性等
需改改进之处
3.如果有的话,潜在改进的主要地方是什么?[如果这些关键要求和建议能够被适当处理,请重点关注能使文章发表的关键要求和建议。如果你看到不可逾越的障碍,请清楚地描述你的担忧。如果能为编辑和作者提供具体有建设性的意见最好不过了,并在可能的情况下,提出可行的建议。同样,应避免含糊不清和/或含糊不清的批评。]
需要小改的地方
4.如果有的话,潜在改进的微小地方是什么?[再次,请具体说明。]
进一步研究的可能与方向
5.有没有机会做一项新的研究?