对本文的总体评价为:分
可参考以下标准:
有必要时,可以在文中任何地方插入你的签名。
A Correlation for the 21st Century
2011
Science
Most scientists will be familiar with the use of Pearson's correlation coefficient r to measure the strength of association between a pair of variables: for example, between the height of a child and the average height of their parents (r ≈ 0.5; see the figure, panel A), or between wheat yield and annual rainfall (r ≈ 0.75, panel B). However, Pearson's r captures only linear association, and its usefulness is greatly reduced when associations are nonlinear. What has long been needed is a measure that quantifies associations between variables generally, one that reduces to Pearson's in the linear case, but that behaves as we'd like in the nonlinear case. On page 1518 of this issue, Reshef et al. (1) introduce the maximal information coefficient, or MIC, that can be used to determine nonlinear correlations in data sets equitably.
Speed, Terry. “A correlation for the 21st century.” Science 334, no. 6062 (2011): 1502-1503.
1. 论文是关于什么的?[请提供该论文的简要摘要。]
2. 这篇论文的长处和短处是什么?[请以以下角度评述:(a)创新(研究问题、建模、方法等);(b)相关性(研究问题、发现等);(c)严谨性(适当的方法、分析的正确性等)]
研究问题、建模、方法等
研究问题、发现
适当的方法、分析的正确性等
3.如果有的话,潜在改进的主要地方是什么?[如果这些关键要求和建议能够被适当处理,请重点关注能使文章发表的关键要求和建议。如果你看到不可逾越的障碍,请清楚地描述你的担忧。如果能为编辑和作者提供具体有建设性的意见最好不过了,并在可能的情况下,提出可行的建议。同样,应避免含糊不清和/或含糊不清的批评。]
4.如果有的话,潜在改进的微小地方是什么?[再次,请具体说明。]
5.有没有机会做一项新的研究?