跳至内容
KKT
用户工具
登录
站点工具
搜索
工具
显示页面
修订记录
反向链接
最近更改
媒体管理器
网站地图
登录
>
最近更改
媒体管理器
网站地图
您的足迹:
paper:multi_period_trading_via_convex_optimization
本页面只读。您可以查看源文件,但不能更改它。如果您觉得这是系统错误,请联系管理员。
====== Multi-Period Trading via Convex Optimization ====== 对本文的总体评价为:(1-5分,5分最高) 可参考以下标准: * 5分:佳作、开创性成果 * 4分:合格的优秀论文、可直接接收发表 * 3分:小改(Minor)后可接收 * 2分:需要大改(Major) * 1分:价值有限,即使修改后亦不能发表 * 0分:本wiki不收录0分的论文。。。 **有必要时,可以在文中任何地方插入你的签名。** ===== 文献基本信息 ===== ==== 标题 ==== Multi-Period Trading via Convex Optimization ==== 作者 ==== - Stephen Boyd, Stanford University, USA, boyd@stanford.edu - Enzo Busseti, Stanford University, USA, ebusseti@stanford.edu - Steve Diamond, Stanford University, USA, stevend2@stanford.edu - Ronald N. Kahn, Blackrock, USA, ron.kahn@blackrock.com - Kwangmoo Koh, Blackrock, USA, kwangmoo.koh@blackrock.com - Peter Nystrup, Technical University of Denmark, Denmark, pnys@dtu.dk - Jan Speth, Blackrock, USA, jan.speth@blackrock.com ==== 出版年份 ==== 2016 ==== 来源 ==== ==== 关键词 ==== ==== 摘要 ==== We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades are chosen. The single period method traces back to Markowitz; the multi-period methods trace back to model predictive control. Our contribution is to describe the single-period and multi-period methods in one simple framework, giving a clear description of the development and the approximations made. In this paper, we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software library that implements many of the ideas and methods described in the paper. ==== 引用方式 ==== ==== 链接 ==== - https://www.nowpublishers.com/article/Details/OPT-023 - https://stanford.edu/~boyd/papers/pdf/cvx_portfolio.pdf - https://eyun.baidu.com/s/3mjB7Usg ===== 评阅意见 ===== ==== 文献简介 ==== 1. 论文是关于什么的?[请提供该论文的简要摘要。] ==== 文献评价 ==== 2. 这篇论文的长处和短处是什么?[请以以下角度评述:(a)创新(研究问题、建模、方法等);(b)相关性(研究问题、发现等);(c)严谨性(适当的方法、分析的正确性等)] === 创新性 === 研究问题、建模、方法等 === 相关性 === 研究问题、发现 === 严谨性 === 适当的方法、分析的正确性等 ==== 需改改进之处 ==== 3.如果有的话,潜在改进的主要地方是什么?[如果这些关键要求和建议能够被适当处理,请重点关注能使文章发表的关键要求和建议。如果你看到不可逾越的障碍,请清楚地描述你的担忧。如果能为编辑和作者提供具体有建设性的意见最好不过了,并在可能的情况下,提出可行的建议。同样,应避免含糊不清和/或含糊不清的批评。] ==== 需要小改的地方 ==== 4.如果有的话,潜在改进的微小地方是什么?[再次,请具体说明。] ==== 进一步研究的可能与方向 ==== 5.有没有机会做一项新的研究? ==== 其他评价 ====
paper/multi_period_trading_via_convex_optimization.txt
· 最后更改: 2023/11/10 12:13 由
127.0.0.1
页面工具
显示页面
修订记录
反向链接
回到顶部