跳至内容
KKT
用户工具
登录
站点工具
搜索
工具
显示页面
修订记录
反向链接
最近更改
媒体管理器
网站地图
登录
>
最近更改
媒体管理器
网站地图
您的足迹:
paper:deep_learning_predicting_asset_returns
本页面只读。您可以查看源文件,但不能更改它。如果您觉得这是系统错误,请联系管理员。
====== Deep Learning for Predicting Asset Returns ====== - https://arxiv.org/abs/1804.09314 Deep learning searches for nonlinear factors for predicting asset returns. Predictability is achieved via multiple layers of composite factors as opposed to additive ones. Viewed in this way, asset pricing studies can be revisited using multi-layer deep learners, such as rectified linear units (ReLU) or long-short-term-memory (LSTM) for time-series effects. State-of-the-art algorithms including stochastic gradient descent (SGD), TensorFlow and dropout design provide imple- mentation and efficient factor exploration. To illustrate our methodology, we revisit the equity market risk premium dataset of Welch and Goyal (2008). We find the existence of nonlinear factors which explain predictability of returns, in particular at the extremes of the characteristic space. Finally, we conclude with directions for future research.
paper/deep_learning_predicting_asset_returns.txt
· 最后更改: 2023/11/10 12:13 由
127.0.0.1
页面工具
显示页面
修订记录
反向链接
回到顶部